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Abstract. The nucleus–nucleus interaction is studied in the framework of the perturbative QCD with
Nc → ∞ and a fixed coupling constant. The pomeron tree diagrams are summed by an effective field
theory. The classical field equations are solved by an iteration procedure, which is found to be convergent
in a restricted domain of not too high energies and atomic numbers. The found gluon distributions do not
scale, have their maxima close to 2 GeV/c independent of rapidity and fall towards the central rapidity
region. The cross-sections slowly grow with energy due to the contribution from peripheral collisions, where
evolution remains linear. Simple variational estimates at higher rapidities confirm this tendency.

1 Introduction

As discussed in [1] in the perturbative QCD with a large
number of colors Nc and a fixed coupling constant high-
energy nucleus–nucleus interaction is described by the ex-
change of an arbitrary number of BFKL pomerons, which
interact between themselves via the three-pomeron cou-
pling. Corrections due to interactions not reducible to
pomeron exchange but rather to gluonic exchange are of
the order 1/N2

c . The resulting pomeronic diagrams can
be classified according to the number of pomeronic loops.
Each pomeronic loop gives an additional factor 1/N2

c . So
in the high-color limit only tree diagrams survive. In the
case of the scattering on the nucleus of a very small probe
(e.g a highly virtual photon) this leaves only pomeronic
fan diagrams, which can easily be summed to lead to the
non-linear BFKL evolution equation [2–4]. This equation,
although not soluble analytically, can be comparatively
easily solved by numerical methods (e.g. [4–6]).

For nucleus–nucleus scattering the situation compli-
cates enormously. The basic complication comes from the
fact that now the pomerons not only split into two but
also merge from two to one. The tree diagrams now do not
reduce to fans but involve other structures, as shown in
Fig. 1. Still, using the methods of effective non-local field
theory, one can sum all these diagrams, reducing the prob-
lem to the solution of a pair of non-linear field equations
in the rapidity-transverse momentum space [1]. Unfortu-
nately, contrary to the non-linear BFKL equation, these
are not evolution equations but rather correspond to a sys-
tem of full-fledged non-linear integral equations, which are
very difficult to solve.

In this paper we make a first attempt at a solution
of these equations and try to gain some insight into the
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Fig. 1. Some pomeron tree diagrams summed by our effective
field theory

physical picture of the nucleus–nucleus interaction in this
approach. We use two different methods of solution. First
we try to find the solution by iterative methods starting
from the fan diagrams only. Unfortunately our results show
that this method is convergent in a very restricted region of
not too high rapidities and not too large nuclei. Beyond this
region the iterations do not converge, indicating some sort
of qualitative change in the form of the solution (a phase
transition?). In relation to this it is worth remembering
that the primitive Glauber approximation formula for the
nucleus–nucleus scattering in the tree approximation shows
a similar singularity as the nuclei become heavy enough (at
A = 64 for nuclei with a constant profile function within
their transverse areas) [7]. To move beyond the mentioned
limits we tried to use a direct variational method to find
the stationary point of the effective action, choosing the
simplest form of the trial fields. Comparison with the exact
solution where it can be found by iterations shows that the
precision of our variational results is not high (of the order
∼ 30%). Still it gives a possibility to see the qualitative
behavior of the solutions at very high rapidities.

Our results show that in the nucleus–nucleus collisions
the rise of the effective number of gluons becomes still more
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suppressed than in the non-linear BFKL equation case. In
fact the variational estimates indicate that it may even go
down with the growth of the rapidity. However this is not
clearly reflected in the final nucleus–nucleus cross-sections,
which continue to slowly rise due to the contribution from
the peripheral parts of the nuclei, where, due to the small
nuclear density, the evolution remains practically linear.

In general, the effect of the pomeron interaction on
the nuclear cross-section is not very impressive. This is
a consequence of the fact that the nucleus–nucleus am-
plitude gets automatically unitarized due to cancellations
between contributions of different disconnected parts. A
much greater change can be seen in the contribution of
each such part (the eikonal function), which at high rapid-
ity becomes many orders of magnitude smaller than in the
pure linear BFKL evolution case.

This paper is organized as follows. In Sect. 2 we re-
call our basic formalism to treat the nucleus–nucleus col-
lisions in the perturbative QCD approach, which reduces
the problem to searching a stationary point for the ac-
tion of a certain non-linear and non-local field theory. In
Sect. 3 we outline our methods to find this stationary and
to solve the corresponding variational field equations. Sec-
tion 4 presents our numerical results, which are discussed
in Sect. 5.

2 AB-cross-sections and effective field theory

At fixed overall impact parameter b and (high) rapidity Y
the nucleus-A–nucleus-B total cross-section is given by

σ(Y, b) = 2
(
1 − e−T (Y,b)

)
. (1)

Here the eikonal function T is a contribution from the con-
nected part and is an integral over two impact parameters
bA and bB of the collision point relative to the centers of
the nuclei A and B:

T (Y, b) =
∫

d2bAd2bBδ2(b − bA + bB)T (Y, bA, bB). (2)

In perturbative QCD, in the large Nc limit, the eikonal
function is given by a sum of all connected tree diagrams
constructed of BFKL pomerons, which interact between
themselves via the triple pomeron vertex (with a minus
sign). It can be shown that this sum is generated by an
effective field theory of two fields φ(y, q) and φ†(y, q) de-
pending on the rapidity y and transverse momentum q with
an appropriately chosen action S [1]. The action consists
of a free part S0, an interaction part SI and an external
part SE. The free part is given by

S0 = 2
〈

φ†
∣∣∣∣K

(
∂

∂y
+ H

)∣∣∣∣ φ

〉
, (3)

where H is the forward BFKL Hamiltonian for the so-called
semi-amputated amplitudes [8] and K is a differential op-
erator in q commuting with H:

K = ∇2
qq

4∇2
q. (4)

The symbol 〈. . .〉 means integrating over y and q with
weight 1/(2π)2 The action S0 generates propagators which
are BFKL Green functions with operators K−1 attached
at their ends. The interaction part of the action describes
splitting and merging of pomerons:

SI =
4α2

sNc

π

〈(
φ†2

Kφ + φ2Kφ†
)〉

. (5)

The coefficient in this term depends on the normalization
of the fields. Finally the external action is

SE = − 〈(
wAφ + wBφ†)〉 , (6)

where wA,B describe the interaction of the pomerons with
the projectile and target. If the color distribution in the
target is given by

ρA(r) = g2ATA(bA)ρ(r), (7)

where ρ(r) is the color distribution in the nucleon and TA

is the target nucleus profile function, then

wA(y, q) = δ(y)
∫

d2rr2ρA(r) ≡ δ(y)ŵA(q), (8)

the δ function indicating that the target is taken to be at
zero rapidity. The function wB(y, q) is given by a similar
formula with δ(y) substituted by δ(y − Y ) where Y is the
rapidity of the projectile.

The classical equations of motion which follow, multi-
plied by (1/2)K−1 from the left, are

(
∂

∂y
+ H

)
φ +

2α2
sNc

π
(
φ2 + 2K−1φ†Kφ

)

=
1
2
K−1wA (9)

and
(

− ∂

∂y
+ H

)
φ† +

2α2
sNc

π

(
φ†2

+ 2K−1φKφ†
)

=
1
2
K−1wB . (10)

From the δ-like dependence on y of the external sources it
follows that the equations can be taken to be homogeneous
in the interval 0 < y < Y , the action of the external sources
being substituted for by the boundary conditions

φ(0, q) =
1
2
K−1ŵA(q), φ†(Y, q) =

1
2
K−1ŵB(q).

(11)
The eikonal function T (Y, bA, bB) is just the action S

calculated with the solutions of (9) and (10), φcl and φ†
cl:

T (Y, bA, bB) = −S{φcl, φ
†
cl}. (12)

Using the equation of motions one can somewhat simplify
the expression for S. Indeed multiplying the first equation
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by 2Kφ†, the second one by 2Kφ, integrating both over y
and q and summing the results, one obtains the relation

2S0 + 3SI + SE = 0, (13)

which is valid for the classical action, that is, one calculated
with the solutions of (9) and (10). Using this relation we
can exclude, say, S0 from (12) to find

T (Y, bA, bB) =
1
2

(
SI

{
φcl, φ

†
cl

}
− SE

{
φcl, φ

†
cl

})
. (14)

The dependence on bA and bB comes from the boundary
conditions (11).

3 Methods of solution

3.1 Final formulas for calculation

To solve (9) and (10) we first rescale the rapidity and fields
to pass to variables known from studying fan diagrams [3,4]:

y → y/ᾱ, H → ᾱH, φ → 1
2α2

s
φ, φ† → 1

2α2
s
φ†, (15)

where, as is standard, ᾱ = αsNc/π. In these variables,
for 0 < y < Y , the equations of motion have the same
form (9) and (10) without the coefficient before the non-
linear terms and with zero right-hand side. All parts of the
action acquire a common coefficient 1/(2α2

s ):

S0 =
1

2α2
s

〈
φ†K

(
∂

∂y
+ H

)
φ

〉
, (16)

SI =
1

2α2
s

〈(
φ†2

Kφ + φ2Kφ†
)〉

(17)

and

SE = − 1
2α2

s

〈
φ†Kφ (δ(y) + δ(y − Y ))

〉
, (18)

where we expressed the external sources via the boundary
values of φ and φ†. Note that the expression for S0 assumes
integration over all values of y, so that the derivative in
y generates δ-like terms which partially cancel with the
external part of the action. If one symmetrizes S0 in φ
and φ†, then these terms cancel exactly one half of SE.
This implies that taking in S0 the integration over y in the
interval 0 < y < Y one has to take the total action as

S = S0 + SI +
1
2
SE. (19)

The operator K−1 appearing before the second non-
linear term in (9) and (10) can be represented as an integral
operator in the transverse momentum space with a ker-
nel [1]

K−1(q1, q2) =
π
2

1
q2
>

(
ln

q>

q<
+ 1

)
, (20)

where q>(<) = max(min){q1, q2}. The operator K contains
the 4th derivative in q. To simplify it we present it as
a product

K = L†L, L = q2∇2
q. (21)

In logarithmic variables L reduces to the 2nd derivative.
If

q = q0eβt, (22)

then

L =
1
β2

∂2

∂t2
. (23)

Using this and integrating by part to exclude higher deriva-
tives we can express the complicated 2nd non-linear term
in the equations via the functions φ and φ† and their first
and second derivatives in t. Denoting

∂φ

∂t
= φ1,

∂2φ

∂t2
= φ2 (24)

and similarly for φ†, we find

2K−1φ†Kφ

=
1

2β3

{∫ t

−∞
dt1e−2zφ2

(
(z + 1)φ†

2 − 2βφ†
1

)
(25)

+
∫ ∞

t

dt1φ2

(
(1 − z)φ†

2 + 2β(2z − 1)φ†
1 − 4β2zφ†

)}
,

where z = β(t − t1). The conjugated term has the same
form with φ ↔ φ†.

Calculating the action one can split K into a pair of
operators L acting on factors depending on φ and φ†. In
this way one obtains

S0 =
1

2α2
sβ

4

〈
φ†

2

(
∂

∂y
+ H

)
φ2

〉
(26)

(symmetrized in φ and φ†),

SI =
1

2α2
sβ

4

〈
2φ2(φ

†
2φ + φ2

1) + h.c.
〉

, (27)

SE = − 1
2α2

sβ
4

〈
φ†

2φ2 (δ(y) + δ(y − Y ))
〉

. (28)

3.2 Boundary conditions

To fix our boundary conditions we use our experience with
the non-linear BFKL equation to study the nuclear struc-
ture functions [4,6]. The adequate initial values for φ(y, q)
were taken there from the Golec-Biernat–Wuesthoff distri-
bution, fitted to the proton data at comparatively low val-
ues of x [9], which was duly eikonalized for a nucleus target.
In fact, eikonalization implies including terms of higher or-
ders in 1/N2

c , outside the precision of the approach. Also it
is not clear how to generalize the eikonalization procedure
to the nucleus–nucleus case. For both of these reasons our
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first choice (I) for the initial values is the non-eikonalized
Golec-Biernat–Wuesthoff distribution for the nucleus:

φ(0, q) = −1
2
a Ei

(
− q2

0.21814

)
. (29)

Here a carries information about the nucleus and impact pa-
rameter

a = σ0TA(bA), (30)

σ0 = 20.8 mb and q is in GeV/c. The value of φ†(Y, q) was
taken in the same form with TA(bA) → TB(bB). To study
a possible influence of the form of the initial distribution
in q we also used the alternative choice (II) with the same
infrared behavior and point where the gluon distribution
is peaked, but a much slower fall of the distribution at
large q,

φ(0, q) = −1
2
a ln

(
1 +

0.21814
q2

)
. (31)

3.3 Iterative solution

Our first method to find the stationary point of the ac-
tion has been to solve the classical equations of motion
iteratively. We have chosen the sum of pure fan diagrams
as a starting function for the iterations. In practice this
means that we first solve the equations with the non-linear
term mixing φ and φ† put to zero. These solutions serve
as input for the iterations φ(o) and φ†(0). Then we find the
next iterations from the equations
(

∂

∂y
+ H

)
φ(n+1)+φ(n+1)2+2K−1φ†(n)

Kφ(n) = 0 (32)

and(
− ∂

∂y
+ H

)
φ†(n+1)

+ φ†(n+1)2
+ 2K−1φ(n)Kφ†(n)

= 0.

(33)
For each iteration we only have to evolve the initial function
from y = 0 to y = Y , rather than solve the equivalent pair
of two dimensional non-linear integral equations, which
considerably diminishes computer time.

Unfortunately our calculations show that this method
works only for rather small values of the participant atomic
numbers and rapidity Y . Obviously the maximal value of
the factor a entering (29) or (30) is achieved at b = 0 and
for max{A, B}. With the Woods–Saxon nuclear density
for Pb–Pb, Cu–Cu, Al–Al, O–O and C–C collisions this
max{a} is found to be equal to 2.20, 1.53,1.11, 0.88 and
0.83 respectively. Our calculations show that for a ≤ 2.2
the described iteration procedure is convergent only up to
Y = 1.1 for choice I of the initial distribution and up to
Y = 1.8. for choice II. For lighter nuclei, taking a ≤ 1.0
we find that iterations converge up to y = 1.3 for choice I
and up to Y = 2 for choice II. The physical values of these
rapidities depend on the chosen value of ᾱ. With ᾱ = 0.2
the above numbers are to be multiplied by a factor 5,
but still remain rather low: for, say, O–O collisions the
iterations allow one to move only up to rapidities of the

order 10, that is, CM energies of the order of 150 GeV and
for Pb–Pb collisions the upper limit for the CM energy
lowers to ∼ 90 GeV.

3.4 Variational solution

A clear alternative is obviously to try to directly find the
stationary point of the action choosing some trial fields
φ(y, q) and φ†(y, q) which satisfy the boundary conditions.
The difficulty of this approach is related to the fact that
the action can have more than one stationary point. In our
first attempt we have chosen the simplest form for the trial
fields with y and q dependence factorized. Moreover, for
the y dependence we chose a simple exponential one, with
a variable slope ∆, so that our trial fields have the form

φ(y, q) = e∆yφ(0, q), φ†(y, q) = e∆(Y −y)φ†(Y, q) (34)

The boundary functions φ(0, q) and φ†(Y, q) were taken
according to (29) and (30) for variants I and II. The only
variational parameter, ∆, was chosen to give the minimal
value for the action S. Note that, with the fields having
a simple analytic form, the necessary derivative functions
entering (26)–(28) are easily found, so that calculating the
action reduces to just doing two independent integrations,
over y and q. With these trial fields the solution for ∆
always exists for any values of Y and parameter a in (29)–
(30), and moreover it corresponds to the minimum of the
action. The quality of this approximation can be checked
at y and a where the exact solution can be found pertur-
batively. At Y = 1 and a = 1 the exact values of the action
S (without factor 1/(2α2

s )) are −0.0120 and −0.0370 for
variants I and II, respectively. The variational values ob-
tained with (34) for these two variants are −0.0100 and
−0.0262. As one observes the precision is not very high (es-
pecially for variant II). Still we hope that the variational
approach might give some indication about the behavior
of the cross-section and eikonal functions at large values
of Y at which we cannot obtain the exact solution.

4 Numerical results

We first report on the iterational solution of the field equa-
tions (32) and (33), which, as mentioned, is convergent at
not too high values of Y , A and B. We chose to study O–O
scattering (A = B = 16) using choice II of the initial func-
tions, which allowed us to obtain the solution up to Y = 2.
Presenting our results we first consider the gluonic density,
which can be related to the functions Lφ(y, q) = h(y, q)
and Lφ†(y, q) = h†(y, q). Indeed, as follows from the study
of the non-linear BFKL equation, the gluon density of a
single heavy nucleus is given by [4]

dxG(x, q)
d2bd2q

=
Nc

2π2αs
h(y, q), y = ᾱ ln

1
x

. (35)

Note that this density in fact describes the interaction
with the nucleus of a quark–antiquark pair and so can
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Fig. 3. Same as Fig. 2 for
the field evolving according to
the non-linear BFKL equation
(only fan diagrams). Curves
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y = 0, 0.5, 1, 1.5 and 2

be measured in γ∗–nucleus collisions. However, it does not
correspond directly to the spectrum of gluon jets produced
in collisions with the nucleus, which is rather given by
the convolution of (35) with the gluon density in a single
BFKL pomeron [10]. We conjecture that the analogous
gluon density in the nucleus–nucleus collision at rapidity y
will be given by a similar formula with contributions from
both nuclei. For central collisions then

dxG(x, q)
d2bd2q

=
Nc

2π2αs

(
h(y, q) + h†(y, q)

)
. (36)

Note that in the considered symmetric case φ†(y, q) =
φ(Y − y, q) and so h†(y, q) = h(Y − y, q).

As for a single nucleus, the density (36) describes the
interaction of a quark–antiquark loop with two nuclei si-
multaneously. So, to measure it one has to introduce the
loop into the interaction area of the two nuclei, which
is obviously hardly realizable from the practical point of
view. Unlike the single nucleus case, the density (36) seems
to have no relation to the inclusive jet production spec-
trum (at least in the central region). Due to AGK can-
cellations the latter is given by a convolution of only fan
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diagrams connected to both nuclei [1]. So the density (36)
is a rather theoretical construction, which describes the
proper gluon field of the two colliding nuclei just as for
a single nucleus (35) describes its proper gluon field. The
study of (36) allows one to see the change of this field due
to the nuclear interaction.

In Fig. 2 we present our solution for h(y, q) at Y = 2,
bA = bB = 0 at different stages of the evolution: y = 0,
0.5, 1.0, 1.5 and 2. For comparison we show in Fig. 3 the
same function which is found from the non-linear evolu-
tion equation for a single nucleus (only fan diagrams).

The difference between Figs. 2 and 3 comes from the in-
fluence of another nucleus on the evolution process. As
one can conclude, this influence is quite strong. Whereas
the fan-diagram density steadily shifts towards higher mo-
menta more or less preserving its shape, the density for the
nucleus–nucleus collision practically does not move until
y = 1, its peak dramatically falling and its low momentum
tail visibly growing. Only as late as at y = 1.5 one notices
some slow shift towards higher momenta, which becomes
more pronounced at y = 2. Still at y = 2 its peak lies
at q = Qs = 2 GeV/c (“saturation momentum”), whereas
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for a single nucleus it is found at Qs = 8 GeV/c. In Fig. 4
we illustrate the total gluon density in O–O collisions at
y = 2 given by the sum h(y, q) + h(Y − q) up to a factor
depending on the coupling constant value. This density
has its peak at the point close to 1 GeV/c, practically in-
dependent of the rapidity. The height of the peak is falling
towards the central region. Some diffusion towards small
momenta is observed. It can however hardly be compared
to the diffusion for the pure BFKL evolution illustrated in
Fig. 5 for the same initial function and same region of y.

A clear physical observable is of course the total nucleus-
-nucleus cross-section obtained by the integration of (1)
over all impact parameters. We show this for O–O scat-
tering at Y ≤ 2 in Fig. 6. To compare we present also the
cross-sections corresponding to a single BFKL exchange.
The latter are naturally larger but the difference is not at
all dramatic, reaching some 18% at the maximal rapidity
Y = 2. This is understandable, having in mind that (1)
actually automatically unitarizes the amplitude and leads
to very similar results even for very different eikonal func-
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tions provided they are large. This can be clearly seen
from the comparison of the eikonal functions at b = 0 in
Fig. 7. At Y = 2 the pomeron interaction in the nucleus–
nucleus collisions reduces it by an order of magnitude,
although it still remains large, ∼ 200. Some spreading of
the gluon distribution into the low momenta domain visi-
ble in Fig. 4 in the central rapidity region makes one think
that the results may be rather sensitive to the infrared
region and so strongly dependent on the infrared cutoff.
Such a dependence indeed exists but is not so strong. With

the infrared cutoff at kmin = 0.3 GeV we obtain at Y = 2
σO−O = 4.18 bn and TO−O(0) = 179, whereas without cut-
off we have σO−O = 5.36 bn and TO−O(0) = 208. As one
observes the cross-section as a result is more sensitive to
the infrared cutoff, which is a result of peripheral collisions,
where the evolution follows the linear BFKL equation.

Our variational results for both variants of the choice
of the initial functions are presented in Figs. 8–11. Since
in this approximation we are not restricted to small val-
ues of A and B, we show our results for Pb–Pb collisions
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Fig. 10. Variational estimates
for the eikonal function at b =
0 for Pb–Pb collisions at high
rapidities with initial conditions
I (lower curve). The upper curve
corresponds to a single BFKL
exchange
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Fig. 11. Same as in Fig. 10 for
initial conditions II

(A = B = 207) In Figs. 8 and 9 we show the total cross-
sections for variants I and II of the initial fields. They are
again compared to the cross-sections corresponding to the
single BFKL exchange. All the cross-sections steadily rise
with Y . However, this rise seems to be very weak for choice
I of the initial function. The single BFKL exchange nat-
urally leads to larger cross-sections and the ratio of these
to the cross-sections with pomeronic interaction rises with
Y , reaching values 2 and 1.5 at Y = 6 for variants I and
II respectively. However this difference is far larger for the

eikonal functions, shown in Figs. 10 and 11 at b = 0. The
eikonal function for a single BFKL exchange rises up to
values of the order 109 at Y = 6, whereas with pomeronic
interactions we find values around 100 or 1000 for vari-
ants I and II. It is remarkable that, with the pomeronic
interaction switched on, the eikonal function actually di-
minishes with y for central collisions. Therefore the rise
of the cross-section is totally due to peripheral collisions,
where, with a low nuclear density, the non-linear effects
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are small and the fields grow according to the pure linear
BFKL equation.

5 Discussion

We have made the first attempt to solve the equations
which describe nucleus–nucleus scattering in the frame-
work of the perturbative QCD with a large number of
colors and a fixed coupling constant. The natural iterative
approach has been found to converge in a restricted do-
main of not too high scaled rapidities and atomic number
of participants. Physical rapidities covered by the conver-
gence range depend on the value of the coupling constant.
For αs = 0.2 they are not greater than 10 for O–O col-
lisions and not greater than 9 for Pb–Pb collisions. The
solutions in this range of Y have been found to generate
the gluon density which falls with y (towards the central
rapidity region) and somewhat spreads into the infrared re-
gion of transverse momenta, its maximum staying around
1 GeV/c. It radically differs from the density of the iso-
lated nucleus, which is known to steadily shift towards
higher momenta, the height of its peak being practically
independent of y. Both the eikonal function and the total
cross-section are found to be damped as compared to the
single pomeron exchange (by an order of magnitude for the
eikonal function). The latter has been found to actually
fall with energy for central collisions. However, the total
cross-sections rise with energy due to peripheral collisions
where non-linear effects are naturally small.

Unfortunately we have not been able to find the solu-
tions outside the mentioned restricted domain of rapidities
and atomic numbers. We do not know what sort of singu-
larity occurs at the boundaries of this domain and even
if the solutions of our equations exist at all. It is possible
that a sort of phase transition occurs at these boundaries,
so that the equations have to be changed.

Just to see some qualitative features of a possible solu-
tion at high rapidities and atomic numbers, we applied a
simple variational procedure, approximating the fields by
certain simple trial functions with a single parameter to be
determined from the stationary point equation. It is hope-
less to expect to study the gluon distribution from such a
simple approach. One expects more reasonable answers for
the eikonal and especially for the total cross-sections which
are weakly dependent on moderate variations of the fields.
Our results seem to indicate that with the further rise of
energy the cross-sections continue to grow slowly, much
slower than with a single BFKL exchange. The eikonal
function in the center continues to fall, very slowly in vari-
ant II for the initial function and rather fast for variant I.

The main lesson to be learned from these first calcu-
lations is that the dynamics of nucleus–nucleus collisions
is much more complicated than for collisions of a small
probe on a single nucleus. The gluon densities we have
found have a much more complicated form than in the
latter case when they scale with the saturation momen-
tum which grows with energy as a power. No scaling of
this sort has been observed. The remaining problem is to
understand the reason of the breakdown of the iterative
solution at a certain value of energy and/or atomic number
and to try to move beyond this value.
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